文章编号:0253-2239(2002)07-0825-04

激光二极管列阵侧面直接抽运方式的 模拟计算和效果评估

谌 霖 侯 霞 陆雨田

(中国科学院上海光学精密机械研究所,上海 201800)

摘要: 计算模拟了激光二极管侧面直接抽运方式,讨论了抽运距离和介质吸收系数等参数对抽运均匀性的影响, 并近似地给出定量结果。证明只要选取适当的抽运参数,采用侧面直接抽运方式也能获得较好的抽运性能和激光 输出。

关键词: 激光二极管侧面直接抽运;模拟计算;抽运均匀性 中图分类号:TN243 文献标识码:A

1 引 言

侧面抽运是半导体激光抽运固体激光器常用的 一种抽运方式。侧面抽运效率不及端面抽运,而且 较难获得高光束质量的固体激光输出。但是侧面抽 运容易实现大功率抽运和大功率输出 而且不需要 十分复杂的整形集光系统。为了获得较高的抽运光 耦合效率 需要压缩激光二极管列阵的快方向发散 角,并为被抽运的激光介质设置反射聚光的腔体。 这往往要用到微柱面镜等特制的光学组件,尤其是 由多个线列阵构成的所谓面列阵器件,要用微光学 工艺配制光场校正组件12]。相比之下,侧面直接 抽运无疑是最简便的抽运方式,尤其是在用面列阵 器件抽运的时候。但是需要考虑的是 这种省却一 切光学系统的侧面直接抽运方式究竟抽运耦合效率 如何?优化设计之下损耗有多大?本文探讨这些实 在的问题 看它是否在很多场合不失为一种经济合 算的抽运方式而值得采用。

2 数值模型

半导体激光器出射的光束在垂直于结平面方向 的发散角 θ_{\perp} 与平行于结平面方向的发散角 $\theta_{//}$ 相 差很大 , θ_{\perp} 通常可达 60° ~ 90° , $\alpha_{//}$ 一般为 10° ~ 20°。侧面抽运时激光二极管列阵的线列方向(即结 平面方向)与激光介质的轴向(z方向)平行,抽运

E-mail ;yu-lin-sl@sina.com.cn

光强大体上可认为是均匀分布的。而在垂直于介质 轴向的方向上发散角 θ_{\perp} 较大,抽运光强近似于角 度的空间高斯分布:

$$P(\theta) = A \exp(-\theta^2/\theta_{1/2}^2)$$
,

其中功率归一化常数

$$A \,=\, P_0 \Big/ \int\limits_{-\pi/2}^{\pi/2} \exp \! \left(-\, heta^2 / heta_{1/2}^2 \,
ight) \! \mathrm{d} heta$$
 ,

 P_0 为单位长度发光线列的发射光功率 , $\theta_{1/2}$ 为发散 角 θ_1 的半宽。

因此计算整个激光介质内抽运光强吸收分布的 模型可简化为只计算激光介质在 *x-y* 截面内抽运光 强的吸收分布。把激光介质截面用单元网格离散化, 每一单元网格找出其吸收的抽运光能是:

 $P_{ab} = P_{in} - P_{out} = P_{in} - P_{in} \exp(-\alpha l),$ 式中 α 为介质对抽运光的吸收系数,与掺杂浓度有 关, P_{in} 为进入该单元网格的抽运光强也即为上一单 元网格的出射光强 P_{out} 。l 为光线在网格内经过的路 径,

 $l = \sqrt{(x_{out} - x_{in})^2 + (y_{out} - y_{in})^2}$,

坐标(x_{in} y_{in})(x_{out} y_{out})为光线在单元网格上入射 点与出射点的坐标。

在 *x-y* 平面内将抽运光进行空间角度离散化, 追踪每一条光线在介质内的传播路径,可以计算出 整个介质内的抽运光强分布。

图 1 是抽运结构的横截面视图。半导体激光器从 介质左右两侧对称抽运,每个阵列由五条发光线列封 装而成线列间距 0.4 mm 发光区宽度 1.6 mm 在垂

收稿日期 2001-07-20; 收到修改稿日期 2001-09-26

直于结平面方向的发散角半宽为 45° 。作为一个实例 我们的计算取截面尺寸 $3 \text{ mm} \times 3 \text{ mm}$ 的 Nd: YAG 为工作介质。计算时 ,用 $0.1 \text{ mm} \times 0.1 \text{ mm}$ 单元网格 将介质 x-y 截面离散化。

Fig. 1 Pumping schematic of structure

3 计算结果及分析

3.1 激光介质上下表面对抽运效果的影响

激光介质的上下表面为非通光面,在侧面抽运 结构中常被用于冷却。出于不同的考虑,可能被镀 全反膜,以充分利用抽运光,也可能被镀 1.06 μ m 增透膜或磨毛,以抑制介质内部的寄生振荡。然而, 根据 Nd: YAG 晶体的折射率 n = 1.823,算出晶体 内全反角 $\theta = \arcsin(1/n) = 33.27^{\circ} < 45^{\circ}$ 。可见最大 发散角 45°的抽运光在这两个界面上必然全反射。 所以,在激光介质的上下侧面镀全反膜是毫无意义 的。但是计算结果显示,如果把这两个侧面磨毛,以 求漫反射效果,则有利于介质内抽运光强的均匀化, 而因此产生的界面损耗可以忽略不计。

由此可知,对于侧面直接抽运条状激光介质的 结构,把激光介质的上下两个侧面磨毛是最佳选择。 这样做既能抑制寄生振荡,又能使介质内的抽运光 场均匀一些,加工过程也最为简便。

3.2 抽运距离 d 对抽运均匀性的影响

设激光介质为常用的掺杂原子数分数为 1×10^{-2} 的 Nd: YAG,其吸收系数 $\alpha = 0.74 \text{ mm}^{-1}$ 。 取不同值的抽运距离 d(激光二极管列阵表面与晶 体距离)进行模拟计算,得到介质 x-y 截面内的抽运 光强分布亦即抽运能量吸收分布图,如图 2 所示(图 中 x、y 轴为空间坐标,z 轴为对抽运光强归一化的 吸收光强,下同)。

计算相应的抽运能量吸收率 $\eta = (\sum P_{ab}) P_0$ 得: $\eta_a = 89.20\%$, $\eta_b = 88.00\%$,

 $\eta_{\rm a} = 89.20\%$, $\eta_{\rm b} = 88.00\%$ $\eta_{\rm c} = 85.87\%$, $\eta_{\rm d} = 83.28\%$.

用 CCD 拍摄图 2(c) 抽运条件下激光介质侧面

的荧光图像,将其归一化后转化为三维图(见图3), 与图 (c)相比较。结果两图符合得非常好,这就验 证了数值模型的可靠性。比较图2中的各图可以看 出 随着抽运距离 d 值的增大,截面内光能分布的 均匀性呈逐渐变好的趋势。更多的计算表明在 d < 0.5 mm 的情况下,这种变化较为明显。而当 d > 0.5 mm时均匀性的变化则不再明显。这是因为随 着距离的增大,越来越多的光线需经过周边反射,导 致抽运吸收更好的均匀性。但是另一方面,随着距 离的增大能量损耗也必然增加,因此抽运能量吸收 率变低。结论是明白的:抽运距离 d 越小,吸收率 越高,但均匀性越差;抽运距离 d 越大,均匀性越 好,但吸收率越低。

Fig.2 Spatial distribution of pumping energy (axes z). (a) d = 0.1 mm; (b) d = 0.3 mm; (c) d = 0.5 mm; (d) d = 0.7 mm

3.3 介质吸收系数对抽运均匀性的影响

在抽运距离 d = 0.5 mm 时,计算不同掺杂浓度 激光介质 x-y 截面内抽运能量吸收分布。图 4 所 示 相应的抽运能量吸收率:

$$\begin{split} \eta_{\rm a} &= 66.40\,\% \ , \qquad \eta_{\rm b} = 80.53\,\% \ , \\ \eta_{\rm c} &= 85.87\,\% \ , \qquad \eta_{\rm d} = 89.45\,\% \, . \end{split}$$

由图 4 可看出,当激光介质掺杂浓度较低,对抽运光的吸收系数较小时,介质内抽运光能分布的整体均匀性很好。但此时抽运光不能被激光介质完全吸收,抽运能量吸收率很低。若掺杂浓度较高,吸收系数很大,则抽运能量被吸收得比较彻底,但在增益介质横截面内的抽运光强分布明显分成两个强区。

Fig. 4 Spatial distribution of pumping energy (axes z) for different atomic fraction.(a) 5×10^{-3} ;(b) 8×10^{-3} ; (c) 10×10^{-3} ;(d) 12×10^{-3}

3.4 抽运参量的选取与定量分析

模体积匹配是直接影响激光器光束质量和转换 效率的关键。兼顾激光器的各项性能指标认真权 衡,选取合适的参量,以获得比较能够符合要求的均 匀分布中心区和抽运能量吸收率,对于侧面直接抽 运的结构尤其重要。前面通过模拟计算,我们得出 了各个抽运参量对抽运均匀性影响的规律。下面我 们将对抽运参量的综合影响近似给出定量关系。

由于抽运光强分布能够同时描述介质内的抽运 光均匀性和能量吸收率,我们用它来衡量抽运参量 的综合影响。首先分析均匀性:考虑到基模振荡区 直径为1 mm~2 mm,而相应的介质尺寸一般为 3 mm~4 mm(直径或见方),取中心 2 mm(直径或 见方)的区域作分析。根据实验结果,我们选取 d =0.5 mm、掺杂的原子分数为 5×10⁻³的抽运条件下 的抽运光强分布为参考。由于计算光强分布时已经 存储为归一化矩阵,可以直接将不同抽运条件下的 抽运光强分布与之比较,计算两个分布矩阵的相关 性(结果见表 1)。其数值介于 0 和 1 之间,结果越 大则相关性越好,亦即该参量条件均匀性较好。

可以看出,对不同的掺杂浓度相关系数基本在

抽运距离 $d = 0.3 \text{ mm} \sim 0.5 \text{ mm}$ 之间出现极大值。 再参考不同抽运参量下的能量吸收率(见表 2),可 知在这个参量范围内,介质的能量吸收率较高。故 我们认为可以得出这样的结论:对于通常掺杂浓度 下的 Nd: YAG 晶体,抽运距离一般取 $0.3 \text{ mm} \sim$ 0.5 mm左右效果较好。

Table 1. Result of the correlation coefficient

atomic fraction $/10^{-3}$	0.1 mm	0.3 mm	0.5 mm	0.7 mm	0.9 mm
5	0.9163	0.9253	0.9353	0.9328	0.9490
8	0.9838	0.9873	0.9895	0.9897	0.9887
10	0.9946	1.0000	0.9979	0.9947	0.9907
12	0.9864	0.9919	0.9880	0.9798	0.9706

Table 2. Absorb rate of pumping energy

actomic fraction $/10^{-3}$	0.1 mm	0.3 mm	0.5 mm	0.7 mm	0.9 mm
5	68.77%	67.81%	66.40%	64.20%	61.65%
8	83.67%	82.37%	80.53%	78.13%	75.17%
10	89.20%	88.00%	85.87%	83.28%	80.18%
12	92.89%	91.55%	89.45%	86.68%	83.48%

侧面直接抽运方式的最大好处是结构简单,但是 输出激光的模式比较差,并且主要适用于要求输出强 度而不追求高效率的场合。图f(a)是在图 $\chi(b)$ 条件 下用 CCD 拍摄近场的输出光斑图像,可以看到沿x方向明显存在两个强区,这也与计算结果相符。当 然 对输出强度允许放宽要求的话,也能得到接近基 横模的输出,其近场输出光斑图像见图f(b),此时抽 运参数取掺杂原子分数为 6×10^{-3} 、d = 0.5 mm。

Fig. 5 Patterns of the laser output

结论 本文用激光二极管面列阵器件对板条状激光 介质两侧直接抽运条件下的抽运均匀性和抽运吸收 率进行了计算机模拟 分析了抽运距离和介质吸收系 数等参量的影响情况 并近似给出了定量结果。结果 表明 选取适当的抽运参数 优化设计之下 侧面直接 抽运的结构也能获得较高的抽运光耦合效率。 用中科院半导体所研制的 300 W 准连续激光二 极管列阵(间距 0.4 mm 的 5 条线列阵组成的面列阵 器件 脉冲宽度 200 µs)抽运 3 mm×3 mm×45 mm 的 Nd: YAG 棒,在脉冲注入能量 480 mJ 的抽运下获得 了脉冲能量 150 mJ 的固体激光输出,光-光转换效率 超过 30%。可见这种抽运方式值得重视。

- 参考文献
- [1] Marshall L R, Kaz A, Burnham R L et al.. Highly efficient TEM₀₀ operation of transversely diode-pumped Nd: YAG lasers. Opt. Lett., 1992, 17(3):186~188
- [2] Brioschi F, Nava E, Reali G C et al.. Gain shaping and beam quality in diode-laser multiarray side-pumpe solidestate lasers. IEEE J. Quant. Electon., 1992, QE-28 (4):1070~1074

Analog Calculation and Evaluation of LDA Direct Side-Pumping

Chen Lin Hou Xia Lu Yutian

(Shanghai Institute of Optics and Fine Mechanics ,The Chinese Academia of Sciences , Shanghai 201800) (Received 20 July 2001 ; revised 26 September 2001)

Abstract: A calculating model of laser diode side-pumping method is proposed, and the effects of the parameters (absorption coefficient and distance between the laser diode and the medium) on the homogeneity are discussed. It is concluded that the high pumping efficiency can be obtained in direct side-pumping method.

Key words : laser diode direct side-pumped ; analog calculation ; pumping homogeneity